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Regularity and reversibility of cascading systems
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The cascading of self-organized systems such as word processor line wraps or sandpile avalanches proceeds
through complex dynamics maintaining the average balance through the gradual buildup and sudden release of
stress through avalanches. Using simple algebraic arguments, we argue that the distribution of time differences
between successive avalanches depends crucially on the reversibility of the system. For instance, in reversible
systems avalanches never occur one immediately after the other, while in irreversible systems, successive
avalanches are less anticorrelated. These arguments are confirmed by line-wrap and sandpile simulations of
both reversible and irreversible systert81063-651X97)08611-X]

PACS numbgs): 05.40:+j, 07.05.Tp, 89.80th, 91.30.Px

Sandpiles, avalanches, and the line-wrap feature in a wordatastrophe to occur at the addition of th#h element of
processor are all examples of cascading systems that are sedtress. If there were no correlations related to the previous
organized. The term “self-organized” is inspired by the fact state of the systend;(n) would be constant and the survival
that the system maintains its average conditions without exprobability would be a simple exponent@l(n) = exp(—I'n).
ternal input, through the gradual buildup and sudden release For a reversible system, when the stress is redueed,
of stress. Power-law behavior, or correlations on all lengthremoving sand grains from the top of a sandpitbe system
scales, has been observed in many of these models, whi¢bproduces its previous statésg., sand ascends the sand-
has inspired them to be labeled as self-ordered cri(@@C  pile). Obviously, dissipative systems such as sandpiles are
systemd1,2]. Attempts have been made to understand suclmot reversible, but the line-wrap feature of a word processor
behavior in the context of an assortment of numerical and10] is such an example. If one enters words into the begin-
experimental examples, such as interface groMth sand- ning of a long paragraph, line wraps ensue, which may
piles[4], numerical evolution model$,6], earthquakes, and propagate all the way to the end of the paragraph. By erasing
sliding blocks[7]. words from the beginning, the resulting line wraps exactly

Here we discuss basic properties and the behavior of cataeproduce previous states of the paragraph. Thus expressions
strophic cascades, those cascades that release stress suchepsesenting the behavior of a reversible system should re-
the avalanche of snow on a mountainside. We show that ifiect the symmetry of exchangimgwith —n. Since the left-
reversible systems a second catastrophe cannot immediatedgnd side of Eq(1) is odd inn, the right-hand side must be
succeed a previous catastrophe, whereas for an irreversibigid as well, requiring that
process, the probability of a second catastrophe is nonzero,
even immediately after the previous one. Reversible systems F'(ny=-I(—n). 2
are nondissipative by definition. Although the reversible sys-
tems that we will consider do cascade according to powerThe most obvious consequence of this requirement is that the
law distributions, they can reach their equilibrium state in-probability of a catastrophe immediately following the pre-
stantly, unlike dissipative systems, which must approach th@ious one is zero.
equilibrium (critical) state gradually. In fact, some authors  |n the left-hand side of Fig. 1 we show the distribution of
require dissipation for a system to acquire the SOC If®€l  catastrophic line wraps binned by the number of characters
The definition of a critical state and the approach to one isntered since the previous catastrophe. To generate this fig-
well described for a Variety of numerical models in a recenture, a |0ng paragraph was simulated using an a|gorithm de-
study by Paczuski, Maslov, and B§8]. Since the purpose scribed previously10], where words were added to the be-
of this StUdy is to understand the effects of irreversibility, WEQinning of the paragraph and a |ine-Wrap cascade that
emphasize that we are not confining ourselves to SOC sygxceeded 1000 lines was defined as a catastrophe. In this
tems, but to any cascading systems that are self-organizedsimulation the word-length distribution is assumed to be ran-

Insight into the importance of reversibility can be gaineddom between 1 and 12 characters, although such details do
by considering the general expression for the probability of ahot affect the structure of the result on a scale larger than the

catastrophe: average word length. We also assumed an infinite line
length, which for practical purposes only means that a single

d_Q — - T(n)Q (1) line should hold many more characters than the average ava-
dn ' lanche size(Since only the number of spaces at the end of a

line needs to be considered for wrapping, this prevented an
wheren is the stress added since the previous catastrophextra length scale from entering the problem. Assuming a
and() is the probability of not having yet had a catastrophe finite line length would cut off the tail of the distribution, as
Thus Q(n=0)=1 and —dQ/dn is the probability for the in that case avalanches could not be separated by much more
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] paragraph since the last catastrophe, the average stress per line is
2 ] 5 plotted. Immediately after the previous catastrophe, the stress is
negative and focused at the beginning of the paragraph, while long
0 I 0 afterward, the stress is positive and spread more evenly through the
0 250 500 0 250 500 paragraph.
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are performed after each word is added to the paragraph.
FIG. 1. Distributions of line-wrap catastroph@ascades greater Figure 1 demonstrates the conditional probability for three
than 1000 linesas a function ofn, the number of characters en- cases M =0, 100, and 1000. Indeed, the conditional prob-
tered since the preceding catastrophe, are shown in the Ieft-haryoi”ty atn=0 moves away from zero for nonzeM and
side panels. The right-hand panels illustrate the conditional prObSaturates for largél. Inspection of the right-hand side of

ability of having a catastrophe at given survival untiln. After Fig. 1 shows that the destruction of the reversibility intro-
each entered worl pairs of lines were switched, destroying the duces even terms into the expressionFan Eq. (1)

reversibility of the cascade. For large mixiMy, the distribution is In the limit of large mixingM, one can solve for the

nonzero for smalln and terms, even im, appear in the ratios o o ; .

plotted in the right-hand-side panels. conditional proba}blhty as a furjct|on of the_net stress in .the
system by modeling the behavior with the diffusion equation,
which is described by random walks at large scales. We con-

thanL characters, wherk is the number of characters in a sider a cascade wherg characters are pushed from the

single line) This distribution represents d)/dnin Eq.(1).  (i—1)th line into theith line and therx;+ &, characters are

If one divides the distribution by the probability of surviving pushed into thei@ 1)th line. Hered; can be considered a

n characters without a catastrophe, one obtdige), the  random step related to the word-length distribution. When

result shown in the right-hand side of Fig. 1. This can belarge numbers of characters cascade through the paragraph,

considered as the conditional probability of a catastrophe ahe variabless; andi can be replaced with continuous vari-

the entering of theith character given that one has survived ablesx(t) andt. Letting f(x,t) refer to the probability ok

until n without a catastrophe. characters falling into ling for a given cascade, one may

By inspecting the upper panels of Fig. 1 and by considerdescribe the behavior df with the diffusion equation
ing Eqg. (1), one concludes that the conditional probability

has a simple behavidr(n)=an. The fact thatl’(n=0) is
zero was expected from the considerations of the reversibil- af(x,t) a*f(x.t)
ity above, but the simplicity of the@ dependence was sur- ot =D Ix? +,85f(x,t). )
prising. Despite the simple behavior illustrated in the upper
panels of Fig. 1, the underlying dynamics of the buildup and
release of stress are complicated. Figure 2 shows the averabiereD is the diffusion constant, which is one-half the vari-
stress(the number of characters in a line above the averageance of the word-length distributidri0]. The factorg rep-
as a function of the line number for given rangesnofthe ~ resents the average stress per e s/t;, wheret, is the
number of characters entered since the last catastrophe. TRgmber of lines defining a catastrophic cascade and the stress
stress is concentrated at the beginning of the file in a nons is the number of characters in the lines befgreninus the
trivial manner. But despite the apparent complexity of theaverage number of characters. If many characters have been
buildup and release mechanism, the behavior illustrated igntered since the last catastrophic cascade, the stress is posi-
the upper panels of Fig. 1 is simple. tive and the distribution tends to drift to larger valuesxof

To demonstrate the consequences of reversibility we conknmediately after a catastrophic cascade, the stress tends to
sider a modification to the line-wrap simulation above. Ob-be negative and the distribution drifts towards smallhere
viously, the fact that stress is building up should explain thais no reason thag should not depend ot as well as the
the conditional probability illustrated in Fig. 1 is monotoni- number of characters. Given the boundary condition that
cally increasing, but should not explain the fact that it startsapproaches zero asgoes to zero, the form fdr at larget is
at zero. We therefore modify the simulation in such a way
that the reversibility is destroyed while maintaining the )
buildup and conservation of stress. The modification entails Fxt) = = \E (x=pB1)

' 2D t

performingM pairwise exchanges of the 1000 lines, which exp~ 4Dt - @
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For the case where the stress is randomly distributed
throughout the paragraph, the probability of a catastrophic
cascade is

r(n) x100

—dQ/dn x100

P.(s)= de f(x,t,)
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n FIG. 3. Distributions of catastrophes from Dhar’s directed sand-
_ _c pile model, binned as a function of the number of grains added to
20(B)—erfc |B] . ! . -
4D the top level of the pile, are shown in the left-hand-side panel. The
N right-hand panel illustrates the conditional probability of having a
For zero stress, the probability becomes catastrophe an given that one has survived until The zero in-
tercept of the figures are in line with what one expects for reversible

t
P.(s=0)= \@’ 5) systems.

C
_ The pile is initialized by adding fOgrains randomly
while for large stres@t./4AD>1, throughout the pile. Grains are then added to a single point
x=y=0 and distributions are calculated for a large number
27ty (6) of catastrophic cascades. Since the sequence of cascades can
D’ begin repeating themselves, the process is repeated many
) times with different initializations. Results are shown in Fig.
Thus, for larges, the chance of a large cascade increaseg The conditional probability indeed approaches zero as ex-
linearly in's and the conditional probability (n) shown in  nected for a reversible simulation. This algorithm induces
the right-hand-side figures should increase linearly with large,gme microscopic structure, which is ignored in the differ-
n. . ] ential considerations of E@l). For instance, all cascades are
~We now consider two more systems: Dhar's simpleseparated by even numbers of sand grains. Even though the
directed-sandpile algorithifil1,12 where sand falls in only  gjstributions were binned in groups of four grains, some os-
two directions and a two-dimensional sandpile simulationgjjiations are still visible in the distributions.
reversible, while the latter example is not. _ ~added randomly throughout the pile. Even if the grains are
In Dhar’s algorithm, one considers a two—dlmen5|onalon|y randomly added to the top three celisy<1, the re-
grid in thex andy directions, where the heigtatis specified  yersibility is destroyed. In this case the system is a function
at integral values ok andy. The relative height can be  of not justn, but also the history of where the grains were
either zero or one. If the height reaches 2, the height is lowxqded. In that case the arguments using(Egare no longer
ered by 2 and the height of the two adjacent cells is increasegh|ig and the behavior of Dhar's model becomes qualita-
by one, that is, if tively like that in the more realistic sandpile discussed be-
low.
Our final simulation has more in common with a real
then sandpile. Here grains are added to the center of a square table
and a catastrophe is defined as an event where an avalanche
zZ(x,y)—z(x,y) -2, removes sand from the table. We simulate the sandpile by
specifying the number of grains stacked at each of 101
z(x,y+1)—z(x,y+1)+1, 7) X 101 points on a square grid. Grains are added one by one
to the center of the pile. After a grain is added, the four
zZ(x+1y)—z(x+1y)+1. boundaries are added to the potential-toppling list. The or-
dering of the directions is chosen randomly. The first top-
Thus, in this model cascades only move in two directionspling in the potential-toppling list is then considered. If the
Dhar has shown that this model, like the line-wrap simula-relative heightAh between two adjacent squares is greater
tion, is completely deterministic as the dynamics do not rethan or equal to 2, a toppling may occur, which will move
quire any random choice, such as in deciding the ordering ofrom zero toAh/2 grains to the shorter stack. After a top-
cascades. For our purposes, we consider an array of finifging, possible topplings into the hole vacated by the recent
width 0=<x,y<4000. A catastrophe is defined as a cascadeollapse are added to the potential-toppling list. Topplings of
that reaches the boundaxy- y=4000. One can see that the the stack that received the grains from the recent collapse
cascade is reversible by considering what would happen ifto its adjacent neighbors are also added to the end of the
grains were subtracted from the array. By requiring that ifpotential-toppling list. The avalanche is not finished until all
the height goes below zero two grains are added to the heiglpbtential topplings have been considered and another grain is
of the cell while subtracting a grain from both of the cells atadded to the center of the pile. This algorithm is similar to
highery, one can reverse any cascade and reproduce preMdut more random in nature than the Manna mdds.
ous states of the system. The randomness of the algorithm leads to a wide variety

X

Pc(s)~B

z(x,y)=2,
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lanches cannot follow one immediately after another, while
in irreversible systems, the probability of a second strong
avalanche is lessened in the period immediately after the first
avalanche, but it is not absolutely precluded. Since all physi-
cal systems, such as sandpiles and earthquakes, are dissipa-
N I TP A tive, one should not expect the degree of regularity in the
0 400 800 1200 o 400 800 1200 cascades as one obtains with the line-wrap simulation or with
n n Dhar's directed sandpile algorithm. These reversible models,
which have diffusive behavior as evidenced by the compari-
FIG. 4. Distributions of sandpile catastropiesalanches where son with random walks, are nonetheless reversible and with-
sand fell off the tablpas a function ofn, the pile since the last out dissipation.
catastrophe, is shown in the left-hand-side panel. The right-hand Perhaps the most outstanding question regarding the regu-
panel.illustrates the conditiopal probgbility of having.a catastrophqarity and predictability of avalanches involves precursors
atn given that one has survived until The nonzero intercept of o, 4" a¢tershocks. In particular, what are the necessary ele-
the figures is in line with what one expects for irreversible systems, . ’ .
ments for a system, either real or simulated, to have an en-
of cascades. Catastrophes may result in removing only a feWanced probability of a large avalanche immediately after a
grains from the table or in some cases may remove severgkevious one? If such questions can be answered, one might
thousand grains. The cascades may spread out and involvel&n classify the plethora of models and systems according to
significant fraction of the pile. The behavior is similar to thata few fundamental rules determined by their microscopic
of the line-wrap simulation in that stress is built up incre- symmetries and laws of motion. This would add to one’s
mentally and released in avalanches that are sometimes drghility to classify models through their critical exponents
matic. The distribution of incremental sand added betwee14]. Since the behavior of the avalanche correlations de-
catastrophes is shown in Fig. 4, and appears similar to thgengs smoothly on the dissipation added to the system as
results of the line-wrap model with mixing, shown in Fig. 1. ghown with the line-wrap model in Fig. 1, it gives hope that
Since the sandpile model is clearly irreversible, the nonzergne might quantitatively understand the nature of correla-
intercept of Fig. 4 affirms the conjecture about irreversibleyions in successive avalanches for complex systems in terms

systems. ) o _ of a few parameters, one of which surely would be a measure
Here we have studied general principles of the regularityf gissipation.

of cascading systems, where stress is built up gradually and

released suddenly. We have found that reversibility plays a This work was supported by the National Science Foun-
fundamental role in determining the system’s propertieglation Research Experience for Undergraduates Program at
through the symmetry in Eq2) which can be thought of as Michigan State, NSF Grants Nos. PHY-9424140 and PHY-
a time-reversal symmetry. In reversible systems, large ava3513900.
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