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Regularity and reversibility of cascading systems
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~Received 18 February 1997!

The cascading of self-organized systems such as word processor line wraps or sandpile avalanches proceeds
through complex dynamics maintaining the average balance through the gradual buildup and sudden release of
stress through avalanches. Using simple algebraic arguments, we argue that the distribution of time differences
between successive avalanches depends crucially on the reversibility of the system. For instance, in reversible
systems avalanches never occur one immediately after the other, while in irreversible systems, successive
avalanches are less anticorrelated. These arguments are confirmed by line-wrap and sandpile simulations of
both reversible and irreversible systems.@S1063-651X~97!08611-X#

PACS number~s!: 05.40.1j, 07.05.Tp, 89.80.1h, 91.30.Px
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Sandpiles, avalanches, and the line-wrap feature in a w
processor are all examples of cascading systems that are
organized. The term ‘‘self-organized’’ is inspired by the fa
that the system maintains its average conditions without
ternal input, through the gradual buildup and sudden rele
of stress. Power-law behavior, or correlations on all len
scales, has been observed in many of these models, w
has inspired them to be labeled as self-ordered critical~SOC!
systems@1,2#. Attempts have been made to understand s
behavior in the context of an assortment of numerical a
experimental examples, such as interface growth@3#, sand-
piles @4#, numerical evolution models@5,6#, earthquakes, and
sliding blocks@7#.

Here we discuss basic properties and the behavior of c
strophic cascades, those cascades that release stress s
the avalanche of snow on a mountainside. We show tha
reversible systems a second catastrophe cannot immedi
succeed a previous catastrophe, whereas for an irrever
process, the probability of a second catastrophe is nonz
even immediately after the previous one. Reversible syst
are nondissipative by definition. Although the reversible s
tems that we will consider do cascade according to pow
law distributions, they can reach their equilibrium state
stantly, unlike dissipative systems, which must approach
equilibrium ~critical! state gradually. In fact, some autho
require dissipation for a system to acquire the SOC label@8#.
The definition of a critical state and the approach to one
well described for a variety of numerical models in a rec
study by Paczuski, Maslov, and Bak@9#. Since the purpose
of this study is to understand the effects of irreversibility, w
emphasize that we are not confining ourselves to SOC
tems, but to any cascading systems that are self-organiz

Insight into the importance of reversibility can be gain
by considering the general expression for the probability o
catastrophe:

dV

dn
52G~n!V, ~1!

where n is the stress added since the previous catastro
andV is the probability of not having yet had a catastroph
Thus V(n50)51 and 2dV/dn is the probability for the
561063-651X/97/56~5!/5306~4!/$10.00
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catastrophe to occur at the addition of thenth element of
stress. If there were no correlations related to the previ
state of the system,G(n) would be constant and the surviva
probability would be a simple exponentialV(n)5exp(2Gn).

For a reversible system, when the stress is reduced~e.g.,
removing sand grains from the top of a sandpile!, the system
reproduces its previous states~e.g., sand ascends the san
pile!. Obviously, dissipative systems such as sandpiles
not reversible, but the line-wrap feature of a word proces
@10# is such an example. If one enters words into the beg
ning of a long paragraph, line wraps ensue, which m
propagate all the way to the end of the paragraph. By era
words from the beginning, the resulting line wraps exac
reproduce previous states of the paragraph. Thus expres
representing the behavior of a reversible system should
flect the symmetry of exchangingn with 2n. Since the left-
hand side of Eq.~1! is odd inn, the right-hand side must b
odd as well, requiring that

G~n!52G~2n!. ~2!

The most obvious consequence of this requirement is tha
probability of a catastrophe immediately following the pr
vious one is zero.

In the left-hand side of Fig. 1 we show the distribution
catastrophic line wraps binned by the number of characten
entered since the previous catastrophe. To generate this
ure, a long paragraph was simulated using an algorithm
scribed previously@10#, where words were added to the b
ginning of the paragraph and a line-wrap cascade
exceeded 1000 lines was defined as a catastrophe. In
simulation the word-length distribution is assumed to be r
dom between 1 and 12 characters, although such detail
not affect the structure of the result on a scale larger than
average word length. We also assumed an infinite l
length, which for practical purposes only means that a sin
line should hold many more characters than the average
lanche size.~Since only the number of spaces at the end o
line needs to be considered for wrapping, this prevented
extra length scale from entering the problem. Assuming
finite line length would cut off the tail of the distribution, a
in that case avalanches could not be separated by much
5306 © 1997 The American Physical Society
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56 5307REGULARITY AND REVERSIBILITY OF CASCADING SYSTEMS
thanL characters, whereL is the number of characters in
single line.! This distribution represents2dV/dn in Eq. ~1!.
If one divides the distribution by the probability of survivin
n characters without a catastrophe, one obtainsG(n), the
result shown in the right-hand side of Fig. 1. This can
considered as the conditional probability of a catastroph
the entering of thenth character given that one has surviv
until n without a catastrophe.

By inspecting the upper panels of Fig. 1 and by consid
ing Eq. ~1!, one concludes that the conditional probabil
has a simple behaviorG(n)5an. The fact thatG(n50) is
zero was expected from the considerations of the revers
ity above, but the simplicity of then dependence was su
prising. Despite the simple behavior illustrated in the up
panels of Fig. 1, the underlying dynamics of the buildup a
release of stress are complicated. Figure 2 shows the ave
stress~the number of characters in a line above the avera!
as a function of the line number for given ranges ofn, the
number of characters entered since the last catastrophe
stress is concentrated at the beginning of the file in a n
trivial manner. But despite the apparent complexity of t
buildup and release mechanism, the behavior illustrate
the upper panels of Fig. 1 is simple.

To demonstrate the consequences of reversibility we c
sider a modification to the line-wrap simulation above. O
viously, the fact that stress is building up should explain t
the conditional probability illustrated in Fig. 1 is monoton
cally increasing, but should not explain the fact that it sta
at zero. We therefore modify the simulation in such a w
that the reversibility is destroyed while maintaining t
buildup and conservation of stress. The modification ent
performingM pairwise exchanges of the 1000 lines, whi

FIG. 1. Distributions of line-wrap catastrophes~cascades greate
than 1000 lines! as a function ofn, the number of characters en
tered since the preceding catastrophe, are shown in the left-
side panels. The right-hand panels illustrate the conditional p
ability of having a catastrophe atn given survival untiln. After
each entered wordM pairs of lines were switched, destroying th
reversibility of the cascade. For large mixingM , the distribution is
nonzero for smalln and terms, even inn, appear in the ratios
plotted in the right-hand-side panels.
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are performed after each word is added to the paragra
Figure 1 demonstrates the conditional probability for thr
cases,M50, 100, and 1000. Indeed, the conditional pro
ability at n50 moves away from zero for nonzeroM and
saturates for largeM . Inspection of the right-hand side o
Fig. 1 shows that the destruction of the reversibility intr
duces even terms into the expression forG in Eq. ~1!.

In the limit of large mixing M , one can solve for the
conditional probability as a function of the net stress in t
system by modeling the behavior with the diffusion equatio
which is described by random walks at large scales. We c
sider a cascade wherexi characters are pushed from th
( i 21)th line into thei th line and thenxi1d i characters are
pushed into the (i 11)th line. Hered i can be considered a
random step related to the word-length distribution. Wh
large numbers of characters cascade through the parag
the variablesxi and i can be replaced with continuous var
ablesx(t) and t. Letting f (x,t) refer to the probability ofx
characters falling into linet for a given cascade, one ma
describe the behavior off with the diffusion equation

] f ~x,t !

]t
5D

]2f ~x,t !

]x2 1b
]

]x
f ~x,t !. ~3!

HereD is the diffusion constant, which is one-half the va
ance of the word-length distribution@10#. The factorb rep-
resents the average stress per lineb[s/tc , wheretc is the
number of lines defining a catastrophic cascade and the s
s is the number of characters in the lines beforetc minus the
average number of characters. If many characters have
entered since the last catastrophic cascade, the stress is
tive and the distribution tends to drift to larger values ofx.
Immediately after a catastrophic cascade, the stress ten
be negative and the distribution drifts towards smallx. There
is no reason thatb should not depend ont as well as the
number of characters. Given the boundary condition thaf
approaches zero asx goes to zero, the form forf at larget is

f ~x,t !5
x

2D
At0

t
exp2

~x2bt !2

4Dt
. ~4!

nd
b-

FIG. 2. For a given range ofn, the characters added to th
paragraph since the last catastrophe, the average stress per l
plotted. Immediately after the previous catastrophe, the stres
negative and focused at the beginning of the paragraph, while
afterward, the stress is positive and spread more evenly through
paragraph.
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5308 56SCOTT PRATT AND ERIC ESLINGER
For the case where the stress is randomly distribu
throughout the paragraph, the probability of a catastrop
cascade is

Pc~s!5E
0

`

dx f~x,tc!

5At0

tc
H e2b2tc/4D1ubuAptc

4D

3F2u~b!2erfcS ubuA tc

4D D G J .

For zero stress, the probability becomes

Pc~s50!5At0

tc
, ~5!

while for large stressbAtc/4D@1,

Pc~s!'bA2pt0

D
. ~6!

Thus, for larges, the chance of a large cascade increa
linearly in s and the conditional probabilityG(n) shown in
the right-hand-side figures should increase linearly with la
n.

We now consider two more systems: Dhar’s simp
directed-sandpile algorithm@11,12# where sand falls in only
two directions and a two-dimensional sandpile simulat
where grains can fall in all four directions. Dhar’s model
reversible, while the latter example is not.

In Dhar’s algorithm, one considers a two-dimension
grid in thex andy directions, where the heightz is specified
at integral values ofx and y. The relative heightz can be
either zero or one. If the height reaches 2, the height is l
ered by 2 and the height of the two adjacent cells is increa
by one, that is, if

z~x,y!>2,

then

z~x,y!→z~x,y!22,

z~x,y11!→z~x,y11!11, ~7!

z~x11,y!→z~x11,y!11.

Thus, in this model cascades only move in two directio
Dhar has shown that this model, like the line-wrap simu
tion, is completely deterministic as the dynamics do not
quire any random choice, such as in deciding the orderin
cascades. For our purposes, we consider an array of fi
width 0<x,y,4000. A catastrophe is defined as a casc
that reaches the boundaryx1y54000. One can see that th
cascade is reversible by considering what would happe
grains were subtracted from the array. By requiring tha
the height goes below zero two grains are added to the he
of the cell while subtracting a grain from both of the cells
highery, one can reverse any cascade and reproduce p
ous states of the system.
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The pile is initialized by adding 106 grains randomly
throughout the pile. Grains are then added to a single p
x5y50 and distributions are calculated for a large numb
of catastrophic cascades. Since the sequence of cascade
begin repeating themselves, the process is repeated m
times with different initializations. Results are shown in F
3. The conditional probability indeed approaches zero as
pected for a reversible simulation. This algorithm induc
some microscopic structure, which is ignored in the diffe
ential considerations of Eq.~1!. For instance, all cascades a
separated by even numbers of sand grains. Even though
distributions were binned in groups of four grains, some
cillations are still visible in the distributions.

Dhar’s algorithm is no longer reversible if grains a
added randomly throughout the pile. Even if the grains
only randomly added to the top three cells,x,y<1, the re-
versibility is destroyed. In this case the system is a funct
of not just n, but also the history of where the grains we
added. In that case the arguments using Eq.~1! are no longer
valid and the behavior of Dhar’s model becomes qual
tively like that in the more realistic sandpile discussed b
low.

Our final simulation has more in common with a re
sandpile. Here grains are added to the center of a square
and a catastrophe is defined as an event where an avala
removes sand from the table. We simulate the sandpile
specifying the number of grains stacked at each of 1
3101 points on a square grid. Grains are added one by
to the center of the pile. After a grain is added, the fo
boundaries are added to the potential-toppling list. The
dering of the directions is chosen randomly. The first to
pling in the potential-toppling list is then considered. If th
relative heightDh between two adjacent squares is grea
than or equal to 2, a toppling may occur, which will mov
from zero toDh/2 grains to the shorter stack. After a top
pling, possible topplings into the hole vacated by the rec
collapse are added to the potential-toppling list. Topplings
the stack that received the grains from the recent colla
into its adjacent neighbors are also added to the end of
potential-toppling list. The avalanche is not finished until
potential topplings have been considered and another gra
added to the center of the pile. This algorithm is similar
but more random in nature than the Manna model@13#.

The randomness of the algorithm leads to a wide vari

FIG. 3. Distributions of catastrophes from Dhar’s directed sa
pile model, binned as a function ofn, the number of grains added t
the top level of the pile, are shown in the left-hand-side panel. T
right-hand panel illustrates the conditional probability of having
catastrophe atn given that one has survived untiln. The zero in-
tercept of the figures are in line with what one expects for revers
systems.
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56 5309REGULARITY AND REVERSIBILITY OF CASCADING SYSTEMS
of cascades. Catastrophes may result in removing only a
grains from the table or in some cases may remove sev
thousand grains. The cascades may spread out and invo
significant fraction of the pile. The behavior is similar to th
of the line-wrap simulation in that stress is built up incr
mentally and released in avalanches that are sometimes
matic. The distribution of incremental sand added betw
catastrophes is shown in Fig. 4, and appears similar to
results of the line-wrap model with mixing, shown in Fig.
Since the sandpile model is clearly irreversible, the nonz
intercept of Fig. 4 affirms the conjecture about irreversi
systems.

Here we have studied general principles of the regula
of cascading systems, where stress is built up gradually
released suddenly. We have found that reversibility play
fundamental role in determining the system’s propert
through the symmetry in Eq.~2! which can be thought of a
a time-reversal symmetry. In reversible systems, large a

FIG. 4. Distributions of sandpile catastrophes~avalanches where
sand fell off the table! as a function ofn, the pile since the las
catastrophe, is shown in the left-hand-side panel. The right-h
panel illustrates the conditional probability of having a catastro
at n given that one has survived untiln. The nonzero intercept o
the figures is in line with what one expects for irreversible syste
et
w
ral
e a
t

ra-
n
e

ro
e

y
nd
a
s

a-

lanches cannot follow one immediately after another, wh
in irreversible systems, the probability of a second stro
avalanche is lessened in the period immediately after the
avalanche, but it is not absolutely precluded. Since all ph
cal systems, such as sandpiles and earthquakes, are dis
tive, one should not expect the degree of regularity in
cascades as one obtains with the line-wrap simulation or w
Dhar’s directed sandpile algorithm. These reversible mod
which have diffusive behavior as evidenced by the comp
son with random walks, are nonetheless reversible and w
out dissipation.

Perhaps the most outstanding question regarding the r
larity and predictability of avalanches involves precurso
and aftershocks. In particular, what are the necessary
ments for a system, either real or simulated, to have an
hanced probability of a large avalanche immediately afte
previous one? If such questions can be answered, one m
then classify the plethora of models and systems accordin
a few fundamental rules determined by their microsco
symmetries and laws of motion. This would add to one
ability to classify models through their critical exponen
@14#. Since the behavior of the avalanche correlations
pends smoothly on the dissipation added to the system
shown with the line-wrap model in Fig. 1, it gives hope th
one might quantitatively understand the nature of corre
tions in successive avalanches for complex systems in te
of a few parameters, one of which surely would be a meas
of dissipation.

This work was supported by the National Science Fo
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